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ABSTRACT
Ridesharing services such as Uber and Lyft have become an im-
portant part of the Vehicle For Hire (VFH) market, which used to
be dominated by taxis. Unfortunately, ridesharing services are not
required to share data like taxi services, which has made it chal-
lenging to compare the competitive dynamics of these services, or
assess their impact on cities. In this paper, we comprehensively
compare Uber, Lyft, and taxis with respect to key market features
(supply, demand, price, and wait time) in San Francisco and New
York City. Based on point pattern statistics, we develop novel statis-
tical techniques to validate ourmeasurement methods. Using spatial
lag models, we investigate the accessibility of VFH services, and
find that transportation infrastructure and socio-economic features
have substantial effects on VFH market features.
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1 INTRODUCTION
Understanding transportation services is essential for a variety of
critical tasks, ranging from urban planning and traffic engineering
to economic and social mobility. Popular options for urban trans-
portation include private vehicles, public transit, and Vehicle for
Hire (VFH) services. Traditionally, the VFH market has been domi-
nated by taxis; however it has recently undergone a dramatic shift
due to the rise of the “sharing economy.” Today, ridesharing services
such as Uber and Lyft augment taxi services in many cities. For
example, the Treasurers Office of San Francisco estimates that there
are over 45K Uber and Lyft drivers in San Francisco [44], while the
San Francisco Municipal Transportation Agency has issued only
2,026 taxi medallions [2]. Similarly, in New York City, Uber and
Lyft cars are now estimated to outnumber taxis 4 to 1 [48].

The taxi industry is heavily regulated to promote equitable pric-
ing and access to services, while constraining their impact on in-
frastructure (e.g., congestion) and the environment. For example, in
most cities taxi fare prices are set by law, taxi drivers are required
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to serve all areas of the city, and the total number of taxis is capped
via a licensing regime (e.g., medallions). Furthermore, many cities
require that taxi companies periodically report trip-level data to
a regulatory agency, to increase transparency and ensure compli-
ance with the law [14]. In contrast, Uber and Lyft both set prices
internally (often using opaque algorithms), they are not required to
serve all areas of the city, and there are no limits on the total num-
ber of ridesharing vehicles. Additionally, ridesharing firms rarely
reveal detailed data to regulators [43, 46].

Given the increasing prominence of ridesharing services, and
the lack of transparency surrounding their operations, it is crucial
to understand how they compare to traditional taxis – and to each
other. In this paper, we focus on issues of competition and accessi-
bility, i.e., do Uber and Lyft offer equal levels of service in terms
of supply and price throughout a given city? Furthermore, do they
offer equivalent levels of service to traditional taxis? If not, are
there associations between the features of different neighborhoods
(e.g., median household incoming, racial/ethic demographics, or
access to public transportation) and the observed levels of service?
The answers to these questions are critical for urban planners and
regulators, as well as to customers of ridesharing services.

In this paper, we take a comprehensive look at the competition
and accessibility of Uber, Lyft, and taxis in 2 major U. S. cities. We
collect ride-level traces fromUber and Lyft vehicles in San Francisco
County (SF) for 40 days, and compare them to corresponding taxi
ride traces from the same time period. We also collect and analyze
27 days of Uber and Lyft traces from New York City (NYC). Based
on this dataset, we make the following contributions:

• We present the first head-to-head spatial and temporal compar-
isons of VFH services. This includes a key finding that 1–3% of
ridesharing drivers are active on Uber and Lyft simultaneously.
In addition, we provide independent validation of key results
from prior work on equitability and utilization of ridesharing
services [15, 49].
• Based on point pattern statistics, we develop a novel Monte Carlo
approach for comparing distributions of spatial points. We use
this method to validate our observed Uber and Lyft datasets
against ground-truth data from NYC [22].
• Using spatial lag models, we examine the effects between urban
features and VFH service levels, and find that transportation
infrastructure (e.g., transit stops) have stronger effects with VFH
market features (e.g., supply and demand) than population den-
sity, highlighting the interdependence of ridesharing with exist-
ing infrastructure. For socio-economic features, we observe that
“whiter” neighborhoods in SF and “richer” neighborhoods in NYC
have significant effects on supply and demand of ridesharing
services, although we caution that the effect sizes are small.
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In the rest of the paper: § 2 presents related work, § 3 describes
data collection and validation methods, § 4 presents comparison of
VFH services, § 5 examines accessibility, and finally § 6 concludes.

2 RELATEDWORK
There is an emerging body of scholarship on ridesharing services.
Lee et al. surveyed Uber drivers to understand how they interact
with the platform [33], while Guo et al. surveyed passengers to
understand why they choose to use ridesharing [26].

Much of the existing literature focuses on the dynamic “surge
pricing” systems used by many ridesharing platforms. Uber has
been involved in several studies that present positive outcomes
from surge pricing, including increased supply of drivers [11, 28],
increased consumer surplus [13], and a decrease in “wild goose
chase” passenger pickups [8]. In contrast, Chen et al. presented
the first independent evaluation of Uber’s surge pricing system,
and found that it was less effective at increasing driver supply
than reducing passenger demand [10]. Guo et al. used data from
Didi (the most popular ridesharing service in China) to analyze
the relationship between demand and dynamic prices [27], while
Kooti et al. used email receipts to examine correlations between
passenger demographics and willingness to pay surge prices [32].

Competition with Taxis. Another line of scholarship investi-
gates competition between ridesharing and taxis. Gloss et al. and
McGregor et al. studied Uber’s impact on the taxi business by inter-
viewing drivers in London and San Francisco [24, 36]. Cramer et al.
found that capacity utilization was higher with Uber than taxis,
possibly due to Uber’s centralized, app-based dispatch system [15].
The different pricing models between Uber and taxis have led re-
searchers to develop price comparison apps to help passengers
minimize travel costs [40, 47].

One notable shortcoming of this body of work is that it tends to
focus on only Uber, yet ridesharing markets in many countries are
oligopolies [37], typically between Uber and Lyft in the U. S. [34].

Accessibility. Several studies have focused on accessibility and
discrimination in the gig-economy [19, 30, 49]. Ge et al. found that
ridesharing drivers sometimes discriminated againstminorities [23],
echoing similar studies on taxi drivers [39]. We investigate whether
patterns of discrimination are discernible at the level of whole cities.

Thebault-Spieker et al. used a Durbin model to examine how pop-
ulation demographics in Chicago affects wait times for Uber [49];
they found no significant direct effects between income and waiting
time. We conduct similar experiments in SF and NYC. However, we
view wait times as a proxy for more fundamental market features
(i.e., supply, demand, and price) that we focus on in this study. Addi-
tionally, case studies on taxi mobility patterns have been conducted
in Manhattan, NYC [20] and Shanghai, China [35].

Regulation. The sudden and massive popularity of ridesharing,
coupled with the lack of transparency exhibited by ridesharing
services, has led to calls for regulation. Calo and Rosenblat argue
that information asymmetry gives ridesharing firms a structural
advantage against passengers and drivers, and thus they must be
regulated [6]. Edelman et al. and Posen et al. discuss potential
solutions for regulating Uber [18, 42]. Rogers argues that there
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Figure 1: Placement of Uber and Lyft measurement points in (a) SF
and (b) NYC. The color represents the average number of rideshar-
ing drivers observed in each block group.

may be pro-social benefits if ridesharing services can be properly
regulated, although they may simultaneously have a deleterious
impact on low-wage workers [45].

One potential reason to regulate ridesharing services is to compel
them to serve all areas of cities equally, as taxis are often required to
do. We aim to inform this debate by examining the accessibility of
Uber and Lyft vehicles throughout SF and NYC. Although rideshar-
ing companies have shared data publicly in the past [22, 50, 51],
these datasets are either high-level aggregated statistics or outdated,
and cannot be used to analyze accessibility across VFH service [52].
Therefore, we collected data using the methods described in § 3.

3 DATA
In this section, we present the datasets that we will use through-
out this paper. We validate our measured Uber and Lyft datasets
using point pattern statistics on a small-scale ground-truth dataset
released by the NYC Taxi and Limousine Commission (TLC) [22].
Throughout this paper, we focus on UberX and basic Lyft vehicles,
since (1) they are the most popular vehicle type offered by these
services [10, 32], and (2) they are the most similar to taxis.

3.1 Data Collection
We collected data in SF and NYC, as they are two of the largest
markets for ridesharing services [44, 48]. We also chose SF as we
were able to partner with the San Francisco County Transportation
Authority (SFCTA) to obtain taxi data.

Uber and Lyft. We collected data from Uber and Lyft using
their apps [7, 10]. In brief, we recorded the network requests made
by Uber and Lyft’s smartphone apps for passengers, as well as
responses from the servers. To render the onscreen maps with
available cars, the apps made requests to the server every five sec-
onds with the user’s latitude and longitude; the servers responded
with a message that included (1) the GPS coordinates of the eight
nearest available cars to the user, (2) the current surge price, and (3)
the estimated wait time for a ride at the requested location. The data
includes a unique ID for each car, as well as each car’s trajectory
for the past few seconds.

We created a script that sent the same messages to Uber and
Lyft’s servers as the passenger apps, and recorded the responses.
We can specify the GPS coordinates sent by our script, which gave
us the ability to collect data at any location. We collect information
for large areas by “blanketing” them with multiple emulated users.
We selected the GPS coordinates for each measurement point such
that it had a large overlap of the eight nearest cars with the adjacent
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Figure 2: Example car trajectory as it would be observed via (a) Uber,
(b) Lyft, and (c) taxi. Each dot represents a GPS coordinate we ob-
serve. For Uber and Lyft, we do not observe the cars when they are
carrying riders.WithUber, cars are also assigned a new ID each time
they pick up a rider.

measurement points, even during rush hour (when the supply of
Uber and Lyft cars peaks [10]), so that we did not miss any cars.

The black dots in Figure 1 show the placement of our measure-
ment points for Uber and Lyft. Note that we placed our measure-
ment points more densely in high-traffic portions of each city, to
ensure full coverage of cars. In SF, our emulated users covered the
entire county; in NYC, we covered all of Manhattan and Staten
Island (not shown in Figure 1), the west parts of the Bronx, and
the northwest parts of Queens and Brooklyn. We collected data
continuously from November 12 to December 22, 2016 in SF, and
from February 1 to February 27, 2017 in NYC.

Taxi. The SFCTA provided trip-level taxi records from the
greater San Francisco area covering November 1 to December 30,
2016. These records contain, for each taxi: its medallion number, its
GPS trace while it is in service, and its occupancy (i.e., when it has
a passenger). However, not all taxi companies reported their data to
the SFCTA. The dataset contains 554 unique taxi medallions, which
represents 27% of the 2,026 medallions that the city has issued [2].
To estimate the entire taxi ecosystem, we assume that the behavior
of the missing taxis follow similar distributions to the ones in our
dataset. Thus, we estimate taxi supply and demand by multiplying
the empirical counts from our dataset by 2026/554 = 3.65.

Although there is taxi data available from NYC during our mea-
surement interval, it only contains pickup and dropoff points, rather
than GPS traces [14]. This limitation precludes us from using the
NYC taxi data in this study.

3.2 Data Preprocessing
Next, we discuss how we prepared our Uber, Lyft, and taxi datasets
for analysis. Preprocessing is necessary because the information
that is available to us from each service is different, and we need to
infer market features to understand competition.

Building Trajectories. First, we compute the trajectories for
each car in our dataset, which are a series of geolocations indexed by
time. Figure 2 illustrates the trajectories we can build for cars from
each service. For Uber, car IDs in our dataset are transient: each car
is assigned a unique ID each time it becomes available to accept
a ride request. Therefore, we record vehicle trajectories when the
drivers are waiting for ride requests. For Lyft, car IDs in our dataset
are persistent, i.e., we observed a unique ID for each vehicle that
existed for the entirety of our data collection period; others have
also observed this behavior [38]. We split the temporal datastream
for a given Lyft vehicle into trajectories by looking for “gaps” of over
60 seconds. During our observation period, more than 99.9% of time

gaps for Lyft vehicles were less than 10 seconds, thus we treat large
60 seconds gaps as a signal indicating that a driver accepted a ride
request or went offline. For taxis, our dataset contains persistent
IDs for drivers and explicit indicators of when each taxi is occupied.
Thus, splitting the taxi datastreams into trajectories is trivial.

Inferring Supply, Demand, and Price. Next, we extract three
key features that we use to analyze the VFHmarket: supply, demand,
and price. To make our data comparable across VFH services, we
discretized all timestamps into a series of five-minute time slots.
Furthermore, we group all precise geolocations into block groups,
which are geostatistical map partitions used by the U. S. Census [9]
and the American Community Survey (ACS) [1].

Supply is defined as the total amount of a specific good or service
that is available to consumers. We measure supply as the number
of available cars in a block group at a given time. One potential
concern is the case when a driver accepts a ride request and is on
their way to pick up the rider. Such a car should not count towards
supply. Fortunately, both Uber and Lyft drivers disappear from
the set of available cars (and our dataset) once they accept a ride
request. Similarly, in our taxi data, taxis that are on their way to
pick up a rider are also labeled as being unavailable during this time.
Another issue concerns Uber specifically. Uber has an internal tool
known as greyballing that allows them to send fake data to specific
users [31]. In § 3.3, we use statistical tests to determine, with high
confidence, that our Uber dataset is not subject to greyballing.

Demand is defined as consumers’ desire and willingness to pay
a price for a specific good or service. In the VFH context, this
means the number of consumers who want to pay for a ride. We
are unable to measure this from a passenger’s perspective (as we
cannot observe users who request rides from Uber and Lyft), but
we can infer when a car picks up a rider (as the car will disappear
from the set of available cars). We therefore define demand in our
context as the number of fulfilled trips, and measure it as the number
of disappearing cars in a block group during a five-minute time slot.

There are several challenges when measuring demand on Uber
and Lyft: first, when a car disappears, it is possible that the driver
logged off, rather than picked up a rider; we expect this case to
be infrequent compared to the number of ride requests. However,
means that our estimates of demand on Uber and Lyft should be
interpreted as upper bounds. Second, a car can also disappear from
our dataset if it drives outside of our measurement area; we handle
this case by detecting cars at the very edge of our measurement
area and not counting them as demand [10].

The market price is defined as the current price at which an asset
or service can be bought. In the VFH context, we use the average
surge price in a block group over the five-minute window as the
price for Uber and Lyft. Taxi prices are fixed by law.

3.3 Data Validation
As noted above, there are limitations to our measurement meth-
ods, especially when inferring demand. To determine whether our
methods are able to accurately capture supply and demand for Uber
and Lyft, we validate our dataset against a ground-truth dataset
containing the pickup locations (i.e., demand) for Uber and Lyft
vehicles in Manhattan from April to September 2014 [22]. The NYC
TLC obtained this ground-truth data directly from Uber and Lyft.
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Figure 3: (a) K value for Uber and Lyft as search radius t is varied,
and versus randomly sampled points and ground truth. (b) Distribu-
tion of K given t = 0.05. We observe no statistically significant dif-
ferences between the measured and ground-truth ridesharing data.

To validate our dataset, we aim to test the null hypothesis:
• H0: The point patterns Pm and Pд are sampled from the same
underlying distribution

where Pm and Pд and the pickup locations for Uber and Lyft rides
from our measured and ground-truth samples, respectively. Our
high-level approach is to find an appropriate statistical measure to
capture the spatial dependency between Pm and Pд , then compare
the dependency of Pm and Pд to empirical point patterns drawn
from randomized combinations of Pm and Pд .

Spatial Descriptive Statistics. Given two samples of points
Pi and Pj , a measure of spatial dependency is the Bivariate Ripley’s
K Function [17], which is defined as:

KPiPj (t ) = α
∑
i ∈Pi

∑
j ∈Pj

I(di j < t ), (1)

where α = (λPi λPjA)
−1 is a constant, A is the area of the study

region, and λ is the density of points; di j is the Euclidean distance
between two points i and j; I is the indicator function (1 if its
operand is true, 0 otherwise); and t is the search radius. Directly
computing KPmPд is inefficient because of the large size of our
datasets. Instead, we estimate KPmPд asymptotically using a Monte
Carlo approach, i.e., we repeatedly resample P∗m from Pm and P∗д
from Pд , and compute KP ∗mP ∗д . Finally, we can use its expectation
KPmPд = E(KP ∗mP ∗д ). Since we care about the distribution of K
rather than its specific value, we set α = 1 for simplicity.

The K function counts the number of points from one distribu-
tion found within a given search radius of each point of another
distribution. Thus, it is used to measure the dependency of two
spatial samples. K increases with search radius t ; when t is fixed,
a larger K represents stronger dependency between the two point
patterns. Figure 3 shows the value of K as we vary t for Uber and
Lyft; the three lines correspond to Pд compared to Pд , Pm , and a
randomly generated point pattern. Intuitively, The dashed lines
represent the upper and lower bounds for K . The solid Pд versus
Pm lines are very close to the upper bound, thus implying high
similarity between the point distributions.

Methods. We adopt a Monte Carlo method to test hypothesis
H0. First, we create the empirical point pattern P = Pm ∪Pд , then in
each iteration we randomly choose two new samples Pi and Pj from
P with |Pi | = |Pm | and |Pj | = |Pд |. This relabeling process simulates
the point generation process of Pm and Pд . Next, we computeKPiPj
repeatedly to form an empirical distribution P(KPiPj ). If Pm and
Pд are sampled from P , KPmPд can be viewed as a sample drawn
from P(KPiPj ). Conversely, if the underlying distributions of Pm
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Figure 4: Temporal dynamics of supply, demand, and average surge
multiplier in SF and NYC. Data is presented averaged over 5-minute
and 2-hour windows. Grey shaded periods are weekends.

and Pд are significantly different, then KPmPд should be outside of
the confidence interval of P(KPiPj ).

Results. The results of our simulations are shown in Figure 3.
We ran 2000 iterations with t = 0.05 in longitude and latitude scale
(note that the choice of t is trivial as long as it does not affect the
normality of the distribution). We find no evidence that Pm and
Pд are drawn from different distributions (p = 0.684 for Uber and
p = 0.744 for Lyft), thus we cannot reject H0.

3.4 Ethics
As our methodology collected data from real VFH services, we took
careful steps to ensure that our work met ethical standards. First,
we did not collect any personal information about any Uber, Lyft,
or taxi drivers or passengers; all of the identifiers we collect are
opaque IDs. Second, we minimized our impact on Uber and Lyft’s
infrastructure: our script for collecting data had the same behavior
as these services’ smartphone apps, and did not collect data more
aggressively than the app itself would. Third, we never requested
rides from Uber or Lyft, and drivers are not able to observe our
measurement clients in the driver apps. Thus, our data collection
should have no impact on VFH drivers, riders, or services.

4 COMPETITION ANALYSIS
In this section, we focus on the competition between Uber, Lyft
and taxis in terms of supply, demand, and price. We examine these
services along temporal and spatial axes.

4.1 Temporal Analysis
To compare the VFH services over time, we aggregate information
about supply and demand across all block groups. For price, we
compute the average price across all block groups.

Supply and Demand. Figure 4 (a–d) presents the aggregate
supply and demand in SF and NYC for each of the three services
during a sample of six days from ourmeasurements.We present data
averaged over fiveminute and two hourwindows. The anomalies on
February 5, 2017 in NYC show a sudden drop in supply and increase
in demand, and corresponding increase in price; we hypothesize
that these were caused by the Super Bowl.
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Figure 6: Spatial dynamics of supply and price in SF. The colors capture the average value of each quantity per block group over time. Solid
borders indicate Communities of Concern. Demand patterns are very similar to supply, thus we omit them.

We immediately make a number of observations. First, we ob-
serve similar periodic fluctuations for both supply and demand for
Uber and Lyft: on weekdays there are two daily peaks correspond-
ing to morning and evening rush hour. On weekends (shaded grey),
there is only one peak per day, typically around noon. On holidays
(e.g., Thanksgiving, not shown), there is much lower supply and
demand, with no particular peaks. Overall, we observe strong cor-
relation between the supply for Uber and Lyft (Pearson r = 0.90
for SF, r = 0.91 for NYC, p < 0.001) as well as demand (Pearson
r = 0.94 for SF, r = 0.92 for NYC, p < 0.001).

Second, we observe that the daily patterns of supply and demand
are different for taxis in SF. The supply for taxis maintains a similar
pattern every day, and exhibits less variance throughout the day;
although there are roughly twice as many Ubers on the road during
rush hour, there are often more taxis on the road at night. We
attribute these differences between taxis and Uber/Lyft to different
employment mechanisms, i.e., Uber/Lyft drivers are considered to
be independent contractors and have more freedom to choose when
they work. When comparing taxis to Uber and Lyft, we observe
relatively weak correlations with supply (Pearson r = 0.58 for
Uber/Taxi, r = 0.53 for Lyft/Taxi, p < 0.001) and demand (Pearson
r = 0.62 for Uber/Taxi, r = 0.58 for Lyft/Taxi, p < 0.001).

Third, we observe that Uber has 2–2.5×more supply and demand
than Lyft. In contrast, the supply of Lyfts and taxis is similar, but
the demand for taxis is significantly lower.

Utilization. These findings suggest that taxis spend more time
waiting for a rider than Uber and Lyft. To explore differences in
utilization, we computed the cumulative distribution of idle time
(i.e., how long cars spend waiting for a rider) for each service in
Figure 5 (a–b). Uber and Lyft show median idle times of roughly 1
minute, versus roughly 10 minutes for taxis. On average, we found
that Lyft drivers spend 19% of their time idling, while taxis spend
48%. These findings hold even when we examine the idle time distri-
butions at different times of the day in SF (Figure 5 (c)). These results
provide independent confirmation of those from Cramer et al., who
also found (using proprietary data provided by Uber) that Uber
vehicles have higher utilization than taxis [15].

Price. We now examine how the citywide average price changes
over time. Figure 4 (e–f) shows the average surge price for all three
services during one week of our measurements. The taxi price line
is always one (as taxi services do not implement surge pricing).
Although we see that prices are very noisy for Uber and Lyft, there
is strong and significant correlation between these two time series
(Pearson r = 0.82 for SF, r = 0.89 for NYC,p < 0.001). This suggests
that even though Uber and Lyft’s dynamic pricing algorithms may
be implemented differently, they both respond similarly to changes
in citywide supply and demand, when aggregated temporally.

4.2 Spatial Analysis
Next, we analyze the spatial dynamics of VFH services by calculat-
ing the average supply, demand, and price per block group.

Supply and Demand. Figure 6 shows the aggregated supply
for Uber, Lyft, and taxi services across SF and NYC, where the color
represents the average amount of supply in each block group. We
observe that aggregate supply follows a similar geospatial distri-
bution across all three services: most vehicles are available down-
town (i.e., near Financial Street in SF and Downtown/Midtown
in NYC), and gradually decrease as one moves further from the
urban core. Overall, we observed very high similarity across ser-
vices (Pearson r > 0.95 for Uber/Lyft for supply in both cities,
and r > 0.80 for Ridesharing/Taxi in SF, p < 0.001). We observe
that demand follows corresponding trends in both cities. Similar
results for Uber vehicles have been observed by Chen et al. [10]
and Thebault-Spieker et al. [49].

Althoughwe observe similar aggregate patterns for supply across
the three VFH services, this does not tell us whether individual car
patterns are the same, i.e., what fraction of the city do individual
drivers serve? This is a critical question, since regulated taxi services
are required to serve all areas of the city by law, but ridesharing
services are not.

To answer this question, we focus on Lyft and taxis in SF (since
Lyft car IDs are persistent), and plot the cumulative distribution of
the number of unique block groups that each car visits in Figure 7 (b).
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Figure 7: Cumulative distribution of (a) lifespan and (b) number of
visited block groups per vehicle.

To make the comparison fair, we only examine the 45% of Lyfts
and 87% of taxis that we are able to observe for ≥30 days (see
Figure 7 (a)). These “full-time” drivers should have ample time over
the course of 30 days to drive through the majority of the city.

As shown in Figure 7 (b), the median number of visited block
groups for full-time Lyft cars is 261, versus 503 for taxis. There
are 580 block groups in SF, meaning each taxi tends to service
the whole city, while the majority of Lyft vehicles serve less than
half of the city. However, we caution that this result should not
be interpreted to mean that Lyft as a whole does not serve all of
SF. One possible interpretation of this observation is that Lyft’s
centralized, computerized dispatch system enables their fleet to
more efficiently service the whole city than taxis, even though
individual Lyft drivers have small coverage areas. We explore this
topic in more detail in § 5.

Price. Finally, we examine the average price for each block
group as shown in Figure 6. We observe some similarity between
Uber and Lyft: for example, both show the highest prices in the
northeastern region and the lowest pricing in the southwestern
region in SF. However, the correlation between Uber and Lyft’s
prices (Pearson r = 0.67 for SF and r = 0.57 for NYC, p < 0.001) is
weaker than for supply and demand.

We do observe a number of distinctions between Uber and Lyft’s
pricing. First, Uber seems to surge prices relatively gradually over
large areas, while Lyft generates higher prices in very specific neigh-
borhoods, such as South of Market, the Castro, Haight-Ashbury,
and Laguna Honda Hospital in SF. These results suggest that Uber
and Lyft’s algorithms use different approaches to calculate spatial
surge prices. We also note that Uber’s algorithm has changed sig-
nificantly since Chen et al. examined it in 2015 [10]. Second, Lyft
has higher median/peak surges on average (1.08/1.23, s.d. 0.056 in
SF; 1.04/1.14, s.d. 0.025 in NYC) than Uber (1.07/1.12, s.d. 0.029 in
SF; 1.02/1.03, s.d. 0.007 in NYC).

4.3 Shared Drivers
Prior work has presented anecdotal evidence that some drivers are
active on Uber and Lyft simultaneously [24], even though both
companies forbid this [21]. However, no one has attempted to quan-
tify the number of “shared” drivers. Identifying such drivers is
important, since they are effectively being double-counted in the
VFH supply, and therefore helps us to understand the competition
between Uber and Lyft.

We identify shared drivers by comparing vehicle trajectories
across our three services. Intuitively, if a driver is available on
Uber and Lyft simultaneously (e.g., by running their driver apps
concurrently, or by using two smartphones), we will observe an
Uber and a Lyft vehicle with temporally and spatially coincident
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Figure 8: Percentage of shared drivers between Uber and Lyft in
(a) SF and (b) NYC over 5-minute and 2-hour windows. Data is pre-
sented under 3 different similarity thresholds.

trajectories1. Furthermore, when a shared driver accepts a request
from one service, they will need to immediately log-out of the other
service, lest they receive another ride request.

Methods. To identify coincident Uber and Lyft vehicle tra-
jectories, we use the following procedure. We convert the GPS
coordinates in each trajectory to block groups and timestamps to
5-minute windows, to deal with the inherent inaccuracies of GPS
reports. Now that we have a sequence of time-associated block
groups B = (t1,b1) → · · · → (t |B | ,b |B | ) that a car went though, let
Bl and Bu be the trajectories of a given Lyft and Uber car, respec-
tively. We detect shared drivers by calculating the Longest Common
Subsequence BLCS between Bl and Bu , while noting that the subse-
quence is not required to occupy consecutive positions in the block
group sequence, since occasionally there are outliers in reported
GPS coordinates that map to incorrect block groups. We consider
Bl and Bu to be the same driver if |BLCS | ≥ ϵ ×min{c, |Bl |, |Bu |},
where ϵ determines the required similarity threshold, and c bounds
the minimum block groups required in the sequences so as to avoid
trivial matches.

Results. We calculate overlapping trajectories every 5 minutes
with c = 2 and 3 thresholds 100%, 90%, and 80% for ϵ . Figure 8
presents the percentage of shared drivers over all Uber and Lyft
drivers in each window. Under ϵ = 100% (i.e., complete trajectory
overlap), there are on average around 1.53% shared drivers between
Lyft and Uber in SF (0/6.66%, s.d. 0.98%), and 0.32% in NYC (0/1.14%,
s.d. 0.19%). This should be viewed as a conservative lower bound
on the fraction of shared drivers. When relaxing the threshold to
ϵ = 80%, the percentage increased to average 3.39% in SF (0/8.81%,
s.d. 1.42%) and 1.32% in NYC (0/3.01%, s.d. 0.39%). Using the same
methods, we find only 0.17% of shared drivers between taxis and
ridesharing cars in SF. Given the prior knowledge that taxi dri-
vers cannot work for ridesharing companies, this suggests that the
margin of error in our analysis is small.

5 EXPLORING ACCESSIBILITY
In this section we address the question: are VFH services equally
accessible throughout cities? As shown in Figure 6, the supply and
price for VFH services are heterogeneous across block groups; we
observe that demand is equally heterogeneous. To better under-
stand this heterogeneity, we fit models using the characteristics of
the VFH services as dependent variables, and citywide features as
independent variables, including:

1We only detect drivers who are active on both services simultaneously, not drivers
who are registered for both but only active on a single service at a time.



Table 1: Estimated average total effects coefficients of citywide (independent) features for four VFHmarket (dependent) features from spatial
lag models in SF. Note: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Supply (#/5min) Demand (#/5min) Price (multiplier) Wait Time (seconds)
Average Total Effects Uber Lyft Taxi Uber Lyft Taxi Uber Lyft Uber Lyft
Constant 3.1019∗∗ 1.8456∗∗ 1.8975 −0.1031 0.1492 −0.1745 1.0228∗∗∗ 1.0771∗∗∗ 2.2396∗∗ 1.4378∗

Spatial Weight 0.0727∗∗∗ 0.0878∗∗∗ 0.0643∗∗∗ 0.0509∗∗∗ 0.0645∗∗∗ 0.0585∗∗∗ 0.002∗ 0.0006 −0.0064 0.0005
Population Density (#/m2) −12.4385 −17.98 60.9386∗ −8.9152 −4.5352∗ 2.8619 1.3017∗∗∗ −0.8465 −41.3405∗∗∗ −27.9079∗∗

Public Transit Stops (#) 0.0361∗ 0.0135 0.0472∗ 0.0181∗∗∗ 0.0039∗∗ 0.0061∗∗∗ −0.0007∗∗ −0.0018∗∗∗ 0.0274∗∗∗ 0.0251∗∗∗

On-Street Parking Meters (#) 0.0136∗∗∗ 0.0047∗∗∗ 0.0085∗∗∗ 0.0066∗∗∗ 0.002∗∗∗ 0.0013∗∗∗ 0.0001∗∗∗ 0.0001∗∗ −0.0013∗∗∗ −0.0009∗∗

Off-Street Parking Lots (#) 0.2053∗∗∗ 0.0818∗∗∗ 0.3268∗∗∗ 0.0744∗∗∗ 0.0248∗∗∗ 0.0227∗∗∗ −0.0 0.0006 −0.0207∗ −0.0198∗

White Number (hundreds) 0.05∗ 0.0283∗ −0.1104∗∗∗ 0.0266∗∗∗ 0.0112∗∗∗ −0.0106∗∗∗ 0.0 0.0011 0.0068 0.0051
Median Income (thousands) 0.0031 0.0021 −0.0025 0.0006 0.0002 −0.0005 −0.0 0.0 −0.0031 −0.0036∗

Median Education Level (year) −0.1118 −0.0768∗ −0.0032 0.0058 −0.0061 0.0159∗ 0.0037∗∗ 0.003 0.0235 0.0306
Family Ratio (%) −2.3186∗∗∗ −1.1234∗∗∗ −2.5165∗∗∗ −0.3969∗ −0.2072∗∗∗ −0.1211 −0.046∗∗∗ −0.1046∗∗∗ 1.7422∗∗∗ 1.7647∗∗∗

R2 0.8469 0.8012 0.7303 0.8802 0.8747 0.7124 0.5576 0.3566 0.515 0.4837
Sample Size 556 556 556 556 556 556 166 166 166 166

Table 2: Estimated average total effects coefficients of citywide (independent) features for four VFHmarket (dependent) features from spatial
lag models in NYC. Note: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Supply (#/5min) Demand (#/5min) Price (multiplier) Wait Time (seconds)
Average Total Effects Uber Lyft Taxi Uber Lyft Taxi Uber Lyft Uber Lyft
Constant 1.7557∗∗ 0.8486∗∗∗ 0.4218∗∗∗ 0.1343∗∗∗ 1.0175∗∗∗ 1.0245∗∗∗ 2.8244∗∗∗ 2.883∗∗∗

Spatial Weight 0.108∗∗∗ 0.1036∗∗∗ 0.0893∗∗∗ 0.0933∗∗∗ −0.0042 −0.0003 −0.0287 −0.0171
Population Density (#/m2) −7.8304∗ −5.0664∗∗∗ −3.1914∗∗∗ −1.0124∗∗∗ 0.4845 0.2053 −12.9185∗∗∗ −16.4425∗∗∗

Public Transit Stops (#) −0.0227 −0.0101 −0.0042 −0.0009 0.002 −0.0011∗ 0.0287∗ 0.0301∗

On-Street Parking Meters (#) 0.0421∗∗∗ 0.0141∗∗∗ 0.0122∗∗∗ 0.0032∗∗∗ −0.0004 0.0001 −0.0042∗ −0.0035
Off-Street Parking Lots (#) 0.5518∗∗∗ 0.1671∗∗∗ 0.184∗∗∗ 0.0446∗∗∗ 0.0051 −0.0007 −0.0197 −0.038
White Number (hundreds) −0.0083 0.0004 0.0017 0.0005 0.0005 0.0001 0.0213∗∗ 0.0228∗∗

Median Income (thousands) 0.007∗∗∗ 0.0017∗∗ 0.001∗∗ 0.0002 0.0002 −0.0001 −0.0021 −0.004∗

Median Education Level (year) −0.0457 −0.0218 −0.0238∗∗ −0.0067∗∗∗ −0.0035 0.0019 −0.0363 −0.0184
Family Ratio (%) −1.7693∗∗∗ −0.6729∗∗∗ −0.236∗∗∗ −0.0699∗∗∗ 0.0147 −0.0145 1.3459∗∗∗ 1.7871∗∗∗

R2 0.811 0.7473 0.7366 0.7373 0.0225 0.0816 0.3608 0.3756
Sample Size 2451 2451 2451 2451 250 250 250 250

• Transportation infrastructure features, e.g., public transit stops,
on-street parking meters, off-street parking lots, etc.
• Socio-economic features, e.g., population density, ethnicity, in-
come, education, etc.

The former set of features are important from a civil engineering
perspective: we seek to understand how VFH services interact with
the existing transportation infrastructure in cities. The second set
of features are important for equitability: by law, taxis must often
serve all areas of cities, while no such requirements apply to Uber
and Lyft. This raises the possibility that ridesharing services may
exhibit discriminatory service patterns.

5.1 Spatial Lag Model
Our first task is selecting an appropriate model for our VFH data.
We have found significant spatial autocorrelation between block
groups for both supply and demand in SF and NYC (Moran’s I test,
p < 0.001). Such endogeneity makes Ordinary Least Squares (OLS)
linear regression inappropriate because the estimated coefficients
would overstate the real effects due to the spatial endogeneity.

Instead, we adopt a spatial lag model that takes spatial depen-
dencies into consideration [3]. The model is specified as:

y = ρWy + βX + ϵ, ϵ ∼ N(0,σ 2) (2)

where y is a market features (supply, demand, price, or wait time),
X = (1,X1,X2, . . . ) are citywide features of interest (note that we
add a constant in the vector), and β is the coefficient vector. Wy is
the endogenous term, and its coefficient ρ explains the effect size of

spatial dependency. This model is generally estimated by Maximum
Likelihood (ML) methods.

Unlike linear regression without endogeneity, the coefficient
β in a spatial model is not directly interpretable because spatial
endogeneity generates spillovers, i.e., the changes in an independent
variable anywhere will affect the value of the dependent variable
everywhere [25]. Instead, there are two kinds of related effects
associated with independent variables:

• Direct effects capture the impact of an independent variable in a
specific location on the dependent variable in that same location.
• Indirect effects capture the impact of an independent variable in a
specific location on the dependent variable in all other locations.

For example, we can estimate the direct effect that median income
in a block group has on supply in that block group, as well as
the indirect effect that it has on supply in all other block groups.
Summing these effects gives us the total effect for an independent
variable in a given location. Furthermore, since each block group has
its own direct and indirect effects, it is often necessary in practice
to present average effects over the whole study area.

Independent Variables. We gather data for the independent
variables in our models from several sources. For socio-economic
data, we rely on the ACS [1]. For transportation infrastructure data,
we rely on the SF Open Data Platform [16] and the New York City
Department of Transportation [41]. We aggregated data into block
groups to match the geospatial granularity of our VFH data.



Model Fitting. In our experiments, we fit models for supply,
demand, and price for Uber and Lyft in SF and NYC, as well as mod-
els for supply and demand for taxis in SF. As a direct comparison
to Thebault-Spieker et al. [49], we also repeat their experiments for
waiting time. The resulting models are shown in Tables 1 and 2. Our
supply and demand models are fit to data at the block group-level.
Our price and wait time models are fit to the observed values at
each measurement point, coupled with socio-economic and trans-
port data from the block group containing each measurement point.
The differing granularity of the models explains why they have
different sample sizes. Note that even though price and waiting
time have weak spatial endogeneity, we still choose the spatial lag
model over OLS as a precaution.

During model fitting, we iteratively removed features to reduce
the effects of multicollinearity. The final models all have conditional
number test c < 30, which is considered acceptable [4].

Diagnostics. We evaluate the goodness-of-fit of our models be-
fore examining specific coefficients. We observe that all supply and
demand models have R2 ≥ 0.71, indicating a strong fit. Additionally,
the spatial weight terms are significant (p < 0.001), which indicates
strong spatial dependency. In contrast, the wait time models are
not as strongly fit (R2 ≥ 0.36) and not spatially dependent. The
price models have the weakest fit, especially in NYC (R2 ≥ 0.36 in
SF, R2 ≥ 0.02 in NYC).

5.2 Transportation Infrastructure
We now examine how VFH market features are affected by the
number of public transit stops, on-street parking meters, and off-
street parking lots per block group.

Supply and Demand. In SF and NYC, we observe highly sig-
nificant (p < 0.001), positive total effects of the number of parking
meters and lots on VFH supply/demand. The sizes of the coeffi-
cients tend to be the same order of magnitude across Uber, Lyft,
and taxi. The number of public transit stops has somewhat sig-
nificant (p < 0.05), positive effects on supply in SF, and highly
significant (p < 0.01), positive effects on demand in SF. However,
public transit stops do not have a significant effect in NYC. Overall,
a 1% increase in off-street parking increases the expected number
of Ubers, Lyfts, and taxis by 0.12%, 0.1%, and 0.28% in SF, and the
number of Ubers and Lyfts by 0.07% and 0.06% in NYC.

To make these findings concrete, we plot the individual effect
sizes of the off-street parking feature on supply and demand in
Figures 9 and 10 for SF and NYC. The dark bars show the direct
effects on the given area, while the light bars show the indirect
effects on the rest of the city. We focus on four Communities of
Concern (COC) [5] in each city. Bay Area COC are defined by the
California Metropolitan Transportation Commission based on eight
variables drawn from ACS data, including poverty levels, ethnicity,
etc. We used the same thresholds to identify COC around NYC.
To make the effect sizes comparable across features with different
units, we present elasticities when analyzing individual effects, i.e.,
the percent changes of dependent variables due to a 1% change in
an independent variables.

We draw three observations from Figures 9 and 10. First, as
expected, the direct effect is always much larger than the indirect

effect. Second, the effect size in terms of elasticities is larger in
areas with fewer parking meters (e.g., Chinatown versus South of
Market). Third, although the effect sizes vary by area, in all cases
we see that demand increases more than supply.

Taken together, these results highlight the interdependence of
transportation infrastructure and VFH services. We hypothesize
that parking meters and (costly) off-street parking lots encourage
people to opt for VFH services rather than using their own vehicles.
With respect to transit stops in SF, it is unclear why more stops
corresponds to more supply and demand. One possibility is that
VFH services are being used for “last-mile” services, e.g., getting
commuters from transit hubs to their homes. Alternatively, it is
possible that people are eschewing public transit options that are
perceived as inconvient for more convenient VFH services. This
latter hypothesis is supported by surveys of riders [12, 29].

Price andWait Time. Tables 1 and 2 show that transportation
infrastructure features have essentially no effects on surge prices,
but some effects on wait times. In SF, although some of the price
coefficients are significant (p < 0.01), their magnitude is extremely
small, meaning there is little impact in practice. Wait times in SF
and NYC are significant (p < 0.05) and positive with respect to
public transit stops, but significant (p < 0.05 in SF) and negative
with respect to parking features. Our wait time results match those
from prior work on Uber [49].

Population Density. One important question is whether pop-
ulation density explains the association we observe between VFH
market features and transportation infrastructure. For example, we
would expect there to be more transit stops in highly populated
areas, which might also correspond to a large demand for VFH
services. However, our models include population density, and we
see that it has mixed effects on VFH market features (sometimes
positive, sometimes negative). Furthermore, we find that population
density is negatively affected by transportation infrastructure fea-
tures (e.g., Pearsons r = −0.28 for public transit stops and r = −0.16
for off-street parking lots, p < 0.001, in SF). Thus, we conclude that
transportation infrastructure does have strong and distinct effects
on VFH market dynamics, independent of population density.

5.3 Urban Socio-Economics
Next, we examine the effect of urban socio-economics on VFH
market features.

Family Ratio. The family ratio is the fraction households in a
block group containing families [1]. Since this feature is not sensi-
tive, we examine it first and treat it as a baseline when discussing
more sensitive socio-economic features.

As shown in Tables 1 and 2, the family ratio has highly significant
(p < 0.001) effects on almost all VFH market features across all
three services in both cities. As the family ratio increases, supply
and demand decrease, while wait times increase, and in SF prices
increase. Figures 9 and 10 show that the effect size for the family
ratio can be large: for example, in Hunter’s Point and Red Hook,
an increase in the number of families by 1% would reduce supply
and demand by 1–8%. We hypothesize that the strong effects of
the number of families on VFH market features are caused by (1)
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Figure 9: Direct and indirect effect sizes of three citywide features
on supply and demand in four COC in SF.
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the need for families to own private cars and (2) the prevalence of
families in the suburban periphery of cities.

Ethnicity in SF. Next we examine ethnicity, which we encode
as the number of individuals who self-identify as white or caucasian
per block group.We do not observe significant effects in NYC, but do
in SF. Specifically, we observe significant (p < 0.05), positive effects
of the number of white individuals on supply/demand for Ubers and
Lyfts, but significant (p < 0.001), negative effects on supply/demand
for taxis. While these effects are troubling and consistent across
block groups in SF (see Figure 9), we caution that the effect size is
small: as shown in Figure 9, even in areas of SF with large minority
populations like Excelsior and Hunter’s Point, a 1% increase in the
number of white residents would only increase supply/demand for
ridesharing by <1%. Contrast this to the much larger effect sizes for
changes in the family ratio. Furthermore, Table 1 shows that the
number of white individuals does not significantly affect price or
wait time in SF (or NYC), so we cannot conclude that minority areas
of SF are being substantively disadvantaged by the lower supply of
ridesharing vehicles.

It is unclear why the fraction of white residents in SF has dif-
ferent effects on ridesharing and taxi ridership. One possibility is
that systematic discrimination by ridesharing drivers that has been
observed by prior audits studies [23] has trained ethnic minority
passengers to rely on taxis instead. However, this hypothesis belies
similar, well-documented discrimination by taxi drivers [39]. An-
other possible explanation is that because the law stipulates that
taxis must serve all areas of the city, taxi drivers have been trained
to visit more diverse areas than ridesharing drivers. Given that
there is a small positive correlation between the number of white
residents per block group and transportation infrastructure in SF
(Pearson r = 0.15 for public transit stops, p < 0.001), the negative
coefficient may essentially be compensation for less transportation
infrastructure in minority communities.

Income in NYC. Finally, we examine the effects of median
income on VFH market features. We do not observe significant
effects in SF, but do observe significant (p < 0.01), positive effects
on supply in NYC. However, similar to ethnicity, the sizes of the
“wealth” effect are small: Figure 10 shows that a 1% increase in

median income only increases supply and demand for ridesharing
by <1%, although this effect is consistent across block groups. We
do not observe significant effects of median income on price in
NYC, and only weak effects on wait times. Note that there is weak,
positive correlation between ethnicity and median income (Pearson
r = 0.27 for SF and r = 0.47 for NYC, p < 0.001), therefore it is
expected to see some mixed effects of these features.

6 DISCUSSION
Urban transportation services serve a critically important role in
our society, and a proper understanding of their dynamics is es-
sential for a variety of tasks. Recently, ridesharing has begun to
“disrupt” long-standing services such as taxis and public transporta-
tion. However, despite their popularity, we know relatively little
about the service that incumbent ridesharing services provide, and
how they interact with existing services and the city as a whole.

In this paper, we present the first head-to-head comparison of
Uber, Lyft, and taxis. We collect 40 days of data in SF and 27 days
in NYC from Uber and Lyft’s mobile applications, and obtained taxi
data in the same time period from the SFCTA. From this data, we
extracted four key market features from all three services: price,
supply, demand, and wait time.

Our results extend the existing VFH literature in key ways. First,
we introduce a novel statistical method for validating measured
ridesharing data. Second, we highlight key differences between
Uber and Lyft’s surge pricing algorithms (and update findings from
prior work [10]), and show that a significant fraction of Lyft drivers
are simultaneously driving for Uber as well. Third, we rigorously
investigate the accessibility of VFH services across SF and NYC
using spatial lag models. Overall, our results independently confirm
key findings from the economics literature [15], and provide a
quantitative complement to qualitative survey results about the
equitability of ridesharing [23].
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