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ABSTRACT
In this work, we introduce a novel metric for auditing group fair-
ness in ranked lists. Our approach offers two benefits compared to
the state of the art. First, we offer a blueprint for modeling of user
attention. Rather than assuming a logarithmic loss in importance as
a function of the rank, we can account for varying user behaviors
through parametrization. For example, we expect a user to see more
items during a viewing of a social media feed than when they in-
spect the results list of a single web search query. Second, we allow
non-binary protected attributes to enable investigating inherently
continuous attributes (e.g., political alignment on the liberal to con-
servative spectrum) as well as to facilitate measurements across
aggregated sets of search results, rather than separately for each
result list. By combining these two elements into our metric, we
are able to better address the human factors inherent in this prob-
lem. We measure the whole sociotechnical system, consisting of a
ranking algorithm and individuals using it, instead of exclusively
focusing on the ranking algorithm. Finally, we use our metric to
perform three simulated fairness audits. We show that determining
fairness of a ranked output necessitates knowledge (or a model)
of the end-users of the particular service. Depending on their at-
tention distribution function, a fixed ranking of results can appear
biased both in favor and against a protected group.

CCS CONCEPTS
• Information systems → Page and site ranking; Content
ranking; • Human-centered computing → User interface de-
sign.
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1 INTRODUCTION
The exponential growth of information available online has neces-
sitated the development of Information Retrieval (IR) algorithms
that decide what content is relevant to users. For example, upwards
of 5.5 billion searches are conducted on Google every day [18],
and in response to each, Google filters and sorts a list of ∼15 re-
sults [46]. Similarly, over 1.4 billion people visit Facebook daily [25]
and scroll through a list of content from friends and advertisers
deemed relevant by the News Feed algorithm. Finally, tens of mil-
lions of worker profiles are available on LinkedIn, filtered and sorted
when recruiters search for prospective employees.

Recently, a concern has been growing that even seemingly be-
nign IR systems may negatively impact people. It has been shown
that algorithms can reflect societal biases [2], and ranking mecha-
nisms are no different. Kay et al. found that Google Image Search
returned images portraying men and women in stereotypical roles
in response to occupation-related queries, and that these results
reinforced stereotypical gender roles [34]. Others have examined
partisan slant in search results [12, 38, 46] in light of user studies
demonstrating that partisan search results can significantly influ-
ence voting behavior [15, 16]. Lastly, two studies have examined
the relationships between gender, race, and ranking of job seekers
on employment websites [9, 23], where systematic biases that push
members of protected classes into lower ranks could result in the
loss of employment opportunities and earnings [36].

Only recently have researchers started addressing the problem
of fairness in ranked outputs. From the IR side, this includes novel
ranking algorithms that aim to achieve representational parity (a.k.a.
group fairness): the ranker is required to assign a certain fraction of
top ranks to people in the protected or minority class) [3, 8, 50, 54].
From the algorithm auditing side (i.e., investigators who look for
fairness problems in black-box systems) [48], Yang and Stoyanovich
introduced metrics for quantifying whether the outputs from a
given search engine are group-fair [51]. This enables auditors to
examine real-world search engines and hopefully hold them ac-
countable for producing unfair outputs.

However, there is a reoccurring challenge in the extant literature
on fair ranking: how to model user attention? Eye-tracking stud-
ies and click-stream data show that users do not distribute their
attention evenly over ranked lists of information [13, 19, 21, 42].
This unequal distribution of attention must be taken into account
when designing fair IR systems and evaluating whether a given IR
system is fair. The trouble is that the distribution of attention for
a given search engine may be unknown, since it varies based on
the user interface of the service (e.g., pagination boundaries) and
context (e.g., searching for a specific movie trailer versus searching
for a new employee).

Most of the previous work on fairness in ranked lists has assumed
logarithmic discounting of attention [50, 51]. However, because of
its flattening shape for low ranks, logarithmic drop-off is impractical
for modeling attention. For example, modeling attention this way
would mean assuming that on a list of 100 results, the sum of
attention given to last eight results is bigger than the attention paid
to the first. Biega et al. use a geometric distribution instead, but do
not investigate the consequences of varying its steepness [3].



In this work, we extend the literature on fair ranking by introduc-
ing a novel metric for measuring group fairness in ranked outputs.
Our metric, the Viable-Λ Test, is designed for auditors and answers
two questions: (1) does there exist a distribution of user attention
P(Λ) such that the output of a search engine is group fair, and (2)
if so, what is the parameterization Λ = (λ1, ..., λm ) of this distribu-
tion? In contrast to prior work that attempts to “score” the fairness
of a ranking algorithm [51], our metric fundamentally re-frames
the question of fairness to involve the consumer of the ranking and
their attention. If the fitted model of attention P(Λ) does not match
empirical observations of user attention in the given search engine,
then the system does not achieve representational parity.

Overall, our paper makes three key contributions:
(1) We introduce a novel metric, the Viable-Λ Test that binds

the usage patterns of a list to the measurement of fairness.
(2) We enable fairness measurements in situations with class

assignment uncertainty, results aggregation, multiple pro-
tected classes, and continuous protected variables.

(3) We evaluate the Viable-Λ Test on data from three real-world
services: a resume search engine, a dating service, and a
web search engine. Our results demonstrate that the choice
and parameterization of the attention function can lead to
dramatically different conclusions about whether (and how)
the rankings are biased.

Note that it is not possible to determine with certainty whether
a given set of search results are biased without knowing the true
attention distribution function for users of the corresponding ser-
vice. Therefore, our work should not be seen as an audit study, but
rather a showcasing of a metric that can be used by the operators or
internal auditors of these services to ensure fair delivery of results.

The remainder of the paper is organized as follows. In Section 2
we introduce related work on fairness in ranked lists and auditing of
ranking algorithms. In Section 3 we provide a detailed description of
the mechanics of the proposed metric. In Section 4we explain how
the parameters of our metric should be set and interpreted based
on context of its use. In Section 5 we analyze three case studies:
a hiring service, a dating service, and Google search. In Section 6
we explain the limitations of our approach. Section 7 suggests the
directions for further research, and Section 8 concludes the article.

2 BACKGROUND

In Pursuit of Fairness. As use of large, observational datasets
has proliferated, so have concerns that systems leveraging this data
may have a negative impact on people. The machine learning com-
munity has mapped the legal concepts of disparate treatment and
disparate impact to direct and indirect discrimination by algorithms,
respectively [5, 22, 43]. Zafar et al. introduced the concept of dis-
parate mistreatment to refer to situations where false positives and
negatives are not equally distributed across subpopulations [52, 53].
Such situations have been shown to occur e.g., in pre-trial assess-
ments [1] and academic performance predictors [49].

While direct discrimination can be corrected by removing the
protected attributes from the data, indirect discrimination is more
challenging to address. Dwork et al. proposed two potential ob-
jectives for mitigating indirect discrimination: under individual

fairness, similar people should be treated similarly by the algo-
rithm, while under group fairness subpopulations should be treated
equivalently to the whole population [14]. There is a large and
growing literature on how to achieve these objectives in machine
learning-based classifiers [5–7, 14, 17, 22, 28–33, 39, 55].

Fairness in Ranking. Achieving fairness in IR systems has
received less attention in the academic community. One challenge
is that research on fair classification does not necessarily generalize
to the ranking context. A second challenge is accounting for order
effects [41], i.e., the well-established tendency of human beings to
pay more attention to items at the top1 of a ranked list.

A few methods for generating group-fair search results have
been proposed. Zehlike et al. leverage randomization by positing
that a given ranked output is fair if it could have been generated by
a random Bernoulli process [54]. Celis et al. propose a more general
approach allowing the user to specify the fairness constraints [8].
Unfortunately, neither of these take user attention into account:
their methods do not distinguish between different orderings of
a set as long as a minimum fraction of items from the minority
class are presented at each rank. In contrast, Singh and Joachims
argue that even if the ranking itself is unbiased, small differences
in placement may lead to large discrepancies of attention [50].
Biega et al. point out that any single ranking of similarly relevant
items is individually unfair because of the uneven distribution of
attention [3]. Therefore, they propose achieving individual equity
(attention corresponding to relevance) within a certain number of
realizations by systematic reshuffling of the list.

Algorithm-in-the loop Approach. Most of the work we dis-
cussed so far focus on measuring or correcting the algorithm with-
out explicitly involving its users. In contrast, Green and Chen em-
phasize the need for considering the whole sociotechnical sys-
tem [20]; they show that rather than focusing solely on the bias in
an automated risk-assessment system, one needs to include contex-
tual information on the system is actually used by judges and how
it affects their decisions.

Auditing Search Engines. There is a growing body of work
from the algorithm auditing [48] community that aims to measure
whether real-world search engines are fair and unbiased. Kay et al.
found that Google Image Search presented results that were stereo-
typically gendered [34], while Hannak et al. and Chen et al. showed
that search engines on employment websites were not group fair
with respect to race and gender [9, 23]. Audit studies have also
examined the political partisanship of search results from Twitter
and Google [12, 38, 46].

An open challenge for the auditing community is selecting ap-
propriate metrics for assessing whether search engine results are
group fair. For example, Kay et al. only looked at simple metrics
like average representation that fail to take order effects into ac-
count [34]. Other audits have used group representation in top K
ranks [24], logarithmic discounting [9, 23, 51] and linear normaliza-
tion by rank [38, 46] to model the decay of attention. In this work,
we argue that these ad hoc methods do not accurately model users’

1We use “top” and “high” to refer to the numerically lowest ranks in lists, e.g., rank
one, in keeping with the norms of the IR literature [10, 27].



attention, and may lead to incorrect conclusions about (un)fairness
of IR systems.

3 METHODS
In this section, we introduce a novel metric formeasuring group fair-
ness in search results. This metric, the Viable-Λ test, combines ex-
isting research from algorithmic auditing, IR, and human-computer
interaction to address the human factors inherent in this problem.

3.1 Overview
Suppose we are given an ordered list of search results R =

[r1, . . . , rn ]T . Our goal is to measure the representation of some
target property p that is shared by each ri ∈ R. The metric pro-
posed in this paper requires the auditor to specify the following
five elements: (1) an alignment vector LR , (2) an attentional weight
vectorWR , (3) a population estimator p̂, (4) a distance metric d , and
(5) a maximum allowable distance δmax.

Below we briefly introduce these elements and explain their role
in the Viable-Λ Test. In Section 4 we explain the design choices
behind each element and how to allocate them appropriately in
practice.

The alignment vector LR is a vector of probability distributions
[l1, . . . , ln ]T that describe the group membership (or alignment) of
ri with respect to the target property p. The subscript R indicates
that LR has the same length as R, and that each li ∈ LR corresponds
to the alignment of each respective ri ∈ R. li can be either discrete
or continuous.

The attentional weight vector WR is a probability vector
[ω(r1), . . . ,ω(rn )]T that models the relative user attention allocated
to each ri ∈ R. While it is difficult to determine the exact distribu-
tion ofWR , we can make assumptions about its shape. Formally,
WR ∼ P(Λ) where P is a family of n-truncated discrete probability
distributions with an unknown set of true parameters Λ.

We calculate the expected cumulative exposure ER of group
representation in R by taking the dot product of LR andWR :

ER = LTR ·WR (1)

Note that ER is a probability distribution with the same domain as
each li ∈ LR (i.e., a distribution describing the target property p).

The population estimator p̂ is a probability distribution that esti-
mates the true demographics of p. For reasons described in § 4.3,
the following formula is often a well-motivated choice:

p̂
def
= L̄R =

∑
ri ∈R

l(ri )

n
(2)

where p̂ has the same domain as li .

The distance metric d quantifies the statistical difference between
the probability distributions ER and p̂.

The maximum acceptable distance δmax is the threshold that
separates group fair from unfair search results. It is chosen in a
context-dependent manner in conjunction with d . As we describe
in § 4.4, d is essentially a statistical significance test, and δmin is

the test statistic threshold. Both components draw inspiration from
the principles of traditional sampling statistics.

3.2 The Viable-Λ Test for Representational
Parity

Given LR , p̂, d , and δmax, we define group exposure as ER = LTR ·WR .
Assume thatWR ∼ P(λ1, . . . , λm ) where P is an n-binned discrete
probability distribution with an unknown set of true parameters
Λ = (λ1, ..., λm ) in some domain spaceD with known bounds. Then
R is unfair if:

(1) ∄λ ∈ D such that d(er , p̂) < δmax, i.e., there is no way to
parameterize the attention distribution such that representa-
tional parity is attained; and

(2) For Λ satisfying the above condition,W (Λ) matches reason-
able expectations and data about true user behavior.

4 DESIGN CHOICES
This section describes the key components of Viable-Λ and the
motivating decisions behind their design.

4.1 The Alignment Vector LR

Alignment as a Probability Distribution. Given an ordered
list of result items R = [r1, . . . , rn ]T , we use an alignment function
ι to map each result ri to a probability distribution describing its
alignment in terms of the target property p (e.g., race, gender, polit-
ical alignment, etc.). As a motivating example, consider a resume
search engine [9] that returns a list of job candidates R in response
to a query (e.g., “software engineer”). Suppose we want to model
the gender alignment p of these results; namely, p is a discrete
probability distribution across three classes: ‘Male,’ ‘Female,’ and
‘Unknown.’ If the search results explicitly display the gender of each
candidate ri , then we can define alignment as follows:

li
def
=


{Female: 1.0, Male: 0.0, Unknown: 0.0} if ri is female
{Female: 0.0, Male: 1.0, Unknown: 0.0} if ri is male
{Female: 0.0, Male: 0.0, Unknown: 1.0} otherwise

(3)

In realistic scenarios, defining li may not be so trivial. Continuing
our example, resume search engines typically do not explicitly
state the gender or race of job candidates. However, recruiters (and
auditors) may still be able to infer them using other information, like
a user’s profile picture, given name, etc. Most existing approaches
to measuring fairness assume that all li are explicitly known and
binary (canonically between protected and non-protected classes S
and SC ) [14, 51]. However, this assumption has not generalized to
empirical studies. By using a probability distribution rather than a
binary indicator, we cover the cases where the class assignment is
ambiguous, where there are multiple classes, or there are multiple
realizations of the ranking.

4.2 Attentional WeightsWR

WR encapsulates the well-documented fact that search engine users
do not treat all search results equally [10, 19, 21, 45]. For example,
the first result on Google Search is estimated to receive approxi-
mately 30% of all clicks, and the results on the first page account for



approximately 90% of clicks [35]. This observation remains true to
a large extent even if the order of the search results is inverted [35].

Modelling AttentionalWeightsω. WR is a probability vector
that models the amount of user attention that each ri ∈ R receives.
WR = [w1, . . . ,wn ]

T , where wi = ω(ri ) ∈ [0, 1] is the output of a
weighting function ω applied to ri . ω is influenced by (1) the user
interface design of the search engine (for example pagination or
highlighted results) and (2) the use context of the search engine.
For an intuition on the latter, consider that a user may only view
several web search results before finding an acceptable answer to
their query, whereas that same user might view dozens of resumes
from a resume search engine if they are tasked with hiring a new
employee.

FittingWR from Empirical Data. A tempting way to approxi-
mateWR is to use empirical data such as organic Click Volume (CV)
and Click-Through Rate (CTR), widely used in digital marketing
and by search engine proprietors. Unfortunately, there are three
serious impediments to using an empirically derivedWR . First, click
data is often proprietary, and thus unavailable to an external auditor.
Second, click data is only an approximation for what users see in
search results. Truly measuring user attention might require expen-
sive eye tracking studies [10, 19, 21, 45]. Third, as we noted above,
the way users distribute their attention over search results depends
on website design and use context. Thus, although eye-tracking
studies are available for sites like Google Search [10, 19, 21, 45], the
data may not be applicable to other search engines.

Potential Choices forWR . In algorithmic auditing, we need
a way to measure user attention without (1) having access to the
vendor’s analytic data, and (2) having to conduct multiple eye track-
ing studies. We partially address this issue by making assumptions
about the shape ofWR . Formally, we assume thatWR ∼ P(Λ) for
some discrete truncated probability distribution P .WR should meet
two criteria:

(1) WR is an n-truncated discrete probability distribution.
(2) Higher-ranked results receive substantially more attention

than lower-ranked ones; i.e., for reasonably large n, ω(r1) ≫
ω(ri ) as i −→ n.

Some families of distributions that fit the above criteria are pre-
sented in Figure 1 and include Truncated Geometric Distribution,
Truncated Log-series Distribution, and Truncated Discrete Pareto
distribution [37]. For the remainder of the paper we use the trun-
cated geometric distribution but in an actual measurement scenario,
another choice may be more appropriate.

The Case of Small n. The above distributions are applicable
when n is reasonably large, i.e., well beyond the human attention
span. When n is small, we can draw inspiration from psychology:
Miller’s Law famously states that the average human’s working
memory can hold roughly 7 objects at a time [40]. When n is suf-
ficiently small, we expect the user to read all of the results.2 For-
mally, when n is small,WR Û∼uni f {0,n}. Note that when choosing

2This may occur in practice when a user queries for obscure information or the vendor
lacks data relevant to the search query

Figure 1: Comparison of Geometric, Log-series, and Discrete
Truncated Pareto (TDP) on a list with length n = 100. In (A),
the parameters are set so that E[WR ] (i.e., the mean number
of results seen) is 15. In (B), the parameters are chosen so
that ω(r1) = 0.2.

WR
def
= uni f {0,n} and p̂def= L̄R , ER is precisely equal to p̂; therefore

all short lists exhibit approximate representational parity.

The Problems of Inverse Log Scaling. We notably left out
inverse log:

WR = normalized

( [
1

ln(2)
, . . . ,

1
ln(n + 1)

]T )
. (4)

Inverse logarithmic scaling is commonly used in IR relevancy met-
rics such as nDCG, and also appears in some metrics of fairness in
ranking [51]. However, this choice ofWR has two major flaws: first,
it decays at a very slow rate and does not meet the relative con-
vergence requirements described above in criteria (2). Even when
n = 1000, ω(r1)

ω(r1000)
is approximately 9.964, which implies that the

last 10 search results are, in aggregate, as influential as the first
result. Second, since there are no parameters for this choice ofWR ,
it incorrectly assumes that user behavior is the static across all
platforms and for all search queries.3

4.3 Estimating Population Demographics p̂
Our metric requires the specification of an estimator p̂. This section
describes how to choose p̂ so that it serves as a reasonable prior for
statistical parity.

Implicit Estimators for p. A tempting proposal would be to
choose an implicit estimator for p based on intuition or observa-
tional data. This is plausible when the search query Q is relatively
simple. For example, consider the case when the user is querying
a resume search engine for a list of certified nurses: recent data
shows that the US national gender ratio for this profession is ap-
proximately 9.5:1 female to male [44], thus we expect fair rankings
for this query to reflect this. For more complex queries, however,
demographic data may unavailable. If the user instead queries for
Android Developers in Greenville, AL with at least three years of
experience, we lack an external data reference. Thus, we are unable
to choose nor justify an implicit estimator p̂.
3The base of the logarithm is irrelevant; after normalization, they all evaluate to the
same vector of values.



Furthermore, Q itself cannot be directly examined in many IR
systems. Online services rank their feeds using proprietary algo-
rithms that rely on personalization. From an auditor’s standpoint,
a generalized fairness metric must have the ability to estimate p
regardless of whether or not we have access to Q .

Choosing p̂def= L̄R . An IR-motivated alternative to circumvent
these issues is to determine p̂ based on the vendor’s data R. Sup-
pose that within an IR system, the vendor evaluates Q then filters
their corpus to yield a subset of results R in which all ri ∈ R meet
some relevancy threshold. Then we can calculate p̂ as defined in
Equation 2, i.e., an equally-weighted sum ∀l(ri ) ∈ LR . Since this
calculation relies on the vendor’s data R, the validity of p̂ is depen-
dent on the integrity of the vendor’s data. Thus, it is imperative to
first audit the vendor’s data curation for sampling bias and result
scoring for direct discrimination. A hypothetical example of unfair
data curation would be a job site that refuses to add female software
engineering candidates to their database. Unfair query evaluation
could occur when a vendor has female candidates in their database
but fails to show them when a recruiter queries for “software engi-
neers” (i.e., being a woman directly impacts the relevancy score).
Fortunately, this style of audit is often straightforward: Chen et al.
tested for direct discrimination in scoring by posting two identical
resumes that varied only by gender, and showing that they appeared
at directly adjacent positions in search results [9]. If a preliminary
audit finds that any of these assumptions are jeopardized, we can
immediately deem R as unfair without needing to calculate p̂ or
other components of Viable-Λ.

Consequences. In choosing p̂def= L̄R , our prior for statistical par-
ity is fitted to the vendor’s data. Thus, if the vendor’s knowledge of
p is lacking or biased (for example, unknowingly exhibits sampling
bias), our estimate of p will be as well. In this situation, Viable-Λ
becomes a metric of how well the vendor’s ranking represents their
own knowledge of p.

4.4 Distance Metric d and the δmax Threshold
We use d and δmax to delineate an acceptance region around p̂.

Distance Metric d . d is a statistical distance metric that quan-
tifies the difference between the two probability distributions ER
and p̂. The choice of d follows naturally based on the domain of ER
and p̂. In Section § 5, we demonstrate the use of Z-approximation
for the binomial test statistic when ER and p̂ are both binomial
distributions.

Maximum Acceptable Distance δmax. δmax establishes an
acceptable range of values around p̂ in which we can safely assume
that group fairness is preserved. In general, δmax is the test statistic
threshold to the statistical significance test d . In conjunction, d and
δmin constitute a statistical significance test with h0: ER ∼ p̂, i.e.,
ER has the same sampling distribution as p̂. A well-constructed
δmax takes the following factors into consideration:

(1) Statistically significant difference between ER and p̂ (size of R).
Suppose that we perform a search to yield results R with length
n = 100, for some binomial alignment property. One interpretation
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corresponding average fraction of seen results (B)) forwhich
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group is more than 1Z away from its representation in the
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of this scenario is that our result R is a sampling distribution of
size n = 100 from a universeU of all relevant candidates. We can
formalize this by saying that R is a simple random sample of U ,
wheren = 100 ≪ |U |.4U has a true binomial parameterp. Thus, we
can employ statistical inference to construct a confidence interval
for p. For a binomial distribution, the maximum likelihood estimate

(MLE) of p yields p̂ = L̄R with standard error sp̂ =
√

p̂(1−p̂)
100 . By

specifying a confidence level (e.g., 95% corresponding to z = 1.96),
we can build a confidence interval for p. Thus, we cannot reject H0
if ER falls inside this range of values. For categoricalp, we can check
for statistically significant difference between p̂ and ER using the
appropriate test statistics (e.g., Pearson’s χ2 Test for Independence).

(2) Number of Search Queries Made. This factor is applicable only in
the case where the the vendor randomizes their search results. We
can model l(ri ) as the sampling distribution of S across k search
realizations. We calculate the standard error in the same manner
as above using k in lieu of n. An important distinction is that the
previous standard error calculated with n represents uncertainty in
p, while this standard error calculated with k represents uncertainty
at each rank in l(ri ). In the case where the vendor does not ran-
domize their rankings or when the auditor can make an unlimited
number of queries, this factor is irrelevant.5

Plotting d(ER , p̂). In the case whereWR has one parameter, we
can plot d(ER , p̂) as a function of λ. An example of this is illustrated
in Figure 2.

4.5 Restricting the Domain of the Parameter
Space D

In our model, we accept the null hypothesis that a ranking R is fair
if there exists a set of parameters Λ within the parameter space
D which brings us within an acceptable range of parity. However,

4Frequentist statistics relies on the assumption that n ≪ |U |, which reflects the fact
that it is often impractical or expensive to collect a census over the entirety ofU .
5With an unlimited number of queries, we can arbitrarily reduce the standard error to
any ϵ > 0. This is not possible with the confidence interval described in the previous
section since it is the vendor—not the auditor—who determines the size of R . In the
case where the vendor is able to increase n (i.e., by acquiring more data), then both
the auditor and the vendor will be able to make more accurate estimates of p .



we are susceptible to type-II errors since not all Λ ∈ D match
realistic expectations about user behavior. Thus, by truncating our
parameter space D, we can increase the power (the probability of
not making a type-II error) of our hypothesis test.

Context-based Assumptions. To illustrate this, consider a
ranked list with length n = 100. Suppose that we have deduced
thatWR ∼ Geom(λ, 100). The mathematically-permitted domain
of the success parameter is λ ∈ (0, 1). However, if we know for
certain that E[WR ] is between 2 and 50 (i.e., the average user views
between 2 and 50 profiles), thus we can restrict our domain space
to λ ∈ (0.02, 0.5).6

Empirically-informed Truncations. Furthermore, we can
also set up a small-scale experiment to estimate E[WR ]. Suppose
that we have a small group of users with N = 16. Assume that the
average number of results viewed is approximately normal with
x̄ = 27 and standard error s = 12. Using the maximum likelihood
estimator (MLE) we can construct a 95% confidence interval for x̄
between approximately 21 and 33. Since E[WR ] ≈ 1/λ, we can say
that the parameter λ lies between 1/21 and 1/33, corresponding to
the interval (0.03, 0.47)7.

As we can see in the above example, it is possible to leverage
data from small-scale experiments to estimate the likelihood of λ.
This offers us an avenue to improve the statistical power of the
Viable-Λ test.8

4.6 Generating Fair Ranked Lists
Other researchers have focused on creating fair ranked lists and
their cost in terms of individual fairness in depth [3, 8, 50, 54].
Here, we provide a few examples of ranked lists that are fair for
fixed λ. Figure 3 shows four best-attempt fair lists with varying
class imbalance (1:10 in top row, 5:10 in bottom row; minority class
A with light blue, majority class B with dark blue) and attention
distributions (λ = 0.1, 0.5 from left column to right). In the top row,
we see that as the distribution becomes steeper, the one minority
sample is placed higher to receive proportional attention. In the
bottom row, the flattest distribution requires a list of results were
both classes are quite mixed. However, in the case of the steepest
distribution, all elements of class B are placed in a block from
rank two on to match the attention already given to class A by its
representative at first rank.

5 CASE STUDIES
In this section, we apply the Viable-Λ Test to three different search
engines: (1) gender fairness on a hiring site used by recruiters to
search for candidates, (2) racial fairness on a dating site, and (3)
political fairness on a search engine. As a disclaimer, we are only
using these results to demonstrate a use of our metric on real-world
data. We do not not claim that any of these are biased or unfair.

6The expected value ofGeom(λ) is 1/λ. SinceWR is truncated, E[WR ] asymptotically
approaches this value for large n.
7We can use the confidence interval of µ to restrict the parameter space of other
families of probability distributions by replacing 1/λ with the corresponding equation
for E(WR ).
8This approach is different from the eye-tracking studies mentioned in § 4.2. Instead of
using eye-tracking heatmaps to construct the entirety ofWR , use a singular dimension
of the data (namely E[WR ]) to inform a reasonable range of values for Λ.
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Figure 3: We generate rankings that satisfy our definition of
attention fairness. Note that depending on the attention dis-
tribution function, fair rankings with the same proportions
of classes differ.

Ethics of Data Collection. While conducting our measure-
ments we were considerate both of the services we collected the
data from and of people who this data represents. All collected data
is available to any person with an account on the corresponding
service. We did not interact with any users of these services as
part of the collection. Additionally, we minimized any impact on
the operations of the services by using a low query intensity (at
most one query every 30 seconds). Finally, we adhered to the usage
quotas of Face++.9

Assumptions In our case studies, we assume that WR ∼

Geom(λ). As discussed in Section § 4.2,Geom(λ) meets the desired
properties of an attention distribution, and thus serves as a reason-
able starting approximate for the trueWR .

We used brute-force optimization over our one-dimensional pa-
rameter space D to check if ∃λ ∈ D such that d(ER , p̂) < δmax.

5.1 Gender in Hiring
Our first cast study examines the ranking of job candidates on a
resume search engine. Data was collected and made available to
us by Chen et al. [9]. Using the recruiter’s interface to the service,
the authors queried 35 different search terms (such as “bartender”,
“electrical engineer”, “laborer”, “pharmacist”, and “software engi-
neer”) in 20 US cities, resulting in 692 non-empty result lists. Of
these results, we look at the 412 with length n ≥ 100.

Modeling Gender Alignment LR Chen et al. determined the
gender of each candidate based on their given name (see [9] for
9https://www.faceplusplus.com

http://www.statistics4u.com/fundstat_eng/cc_optim_meth_brutefrc.html
https://www.faceplusplus.com
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Figure 4: Best case scenario of error distribution among
location-job pairs in the resume search engine. For each
location-job querywe attempt to find aΛ forwhich the rank-
ing could be considered fair. We fail to do so in 8% of cases.

details). The gender estimation is a real number describing the
probability of a candidate being male between 0 (female) and 1
(male). The original authors dichotomized the data, assuming ‘male’
for probabilities >0.8, ‘female’ for probabilities <0.2, and omitted
other profiles. These constituted 8% of all candidates. In this study,
we use the gender alignment probabilities directly. We do neither
omit ambiguous candidates, nor project alignments to their most-
likely class.

Determining p̂ In this study, the true population demographics
for each query are unknown. As per Section § 4.3, we cannot choose
an implicit estimator and instead leverage the vendor’s data by

choosing p̂def= L̄R in each query.

Evaluating d and δmax . p̂ and ER are both binomial distri-
butions representing gender alignment. To check for statistically
significant difference between them, we use the Z-test approxi-
mation for the binomial test. This d(ER , p̂ is our test statistic. We
deem Ri unfair if ∄λ such that this test statistic is less than 1Z. This
represents a 68% confidence that fair representation is impossible.

Viable-Λ in Hiring. In Figure 4, we run Viable-Λ for each list
and plot the minimum attainable d(ER , p̂ for each Ri . About 92% of
rankings can be considered fair at the 1Z threshold. Still, 6% of these
lists appear biased against women and 3% appear unfair to men
regardless of the distribution function. All rankings are deemed fair
at the 2Z threshold

In Figure 5A, we demonstrate the effect of λ on d(ER , p̂). As per
Section § 4.5, we assume within reason that E[WR ] ∈ [.1n, .5n]
in the context of this search engine. The horizontal axis depicts
nine λ-parameter choices corresponding to a user viewing between
10% and 50% of all results on average. For all sampled values of λ,
rankings under-represent women more often than men.

While the gender ratio is balanced in the dataset, the gender
proportions vary widely between queries. We calculated the p̂ = L̄
estimate for p for each query separately. Although the vast majority
of rankings passed the Viable-Λ test, rankings tended to under-
represent women more frequently for most values of λ.

Figure 5: Themore results a user sees, the higher the chance
that the ranking can be considered fair (in extreme cases
when all results are seen, the ranking is always fair). A) Re-
gardless of λ, women are underrepresented more often than
men in the job-location searches. B) Depending on the true
value of λ, Black profilesmay be underrepresentedmore fre-
quently than non-Black profiles.

5.2 Race in Dating
We used an author’s personal account to query an online dating
service’s API. The script ran once every 15 minutes over the course
of one week, collecting 672 lists each with length n = 100. We
determined that each of these lists sampled from a pool 4,407 unique
profiles. Even though we were running the same query repeatedly,
we observed significant shuffling and churn in the results, with
some profiles being replaced more often than others.

Modelling Race Alignment. We used Face++ to infer the race
of each person from their profile picture. Because the data is only
used for illustration purposes, the precision of the race detection
is not crucial.10 In 813 (18.4%) profiles, Face++ detected > 1 face;
among the identified profiles 2,411 (54.7%) were classified as white,
573 (13.0%) as Black, 534 (12.1%) as Asian, and 76 (1.7%) as Indian.
For each profile photo, Face++ returns only the most likely race,
not its certainty. One potential option is to model alignment as a
categorical probability distribution among the five aforementioned
classes. In doing so, we would use the χ2 Independence Test to
compute the statistical difference between ER and p̂. This would
allow usmeasure the representation of all classes simultaneously. To
simplify our illustrations, we project our alignment into a binomial
distribution - i.e., Black vs. non-Black profiles.

Determining p̂, d , and δmax . In this example, we ran the same
query across each of our searches, yielding 4,407 unique results that
meet the vendor’s relevancy threshold. In our first approach, we

chose p̂def= L̄ on the set of all unique results. In doing so, we can build
a 95% confidence interval for p; namely p̂ is a binomial sampling
distribution with n = 4407. Since we have a large sample size, our
test statistic has a very small error threshold. We use the Z-test
approximate for binomial test as our distance metric d again. Using

10Face++ inferred a different gender than self-reported for 13% profiles identified as
white, 11% profiles identified as Asian, and 8% of profiles identified as Black. Pre-
vious studies have shown high gender misclassification rates for Black women in
particular [4]).



this definition of p̂, Viable-Λ showed that rankings unequivocally
over-represented Black profiles. While Black profiles constituted
only 13% of all unique profiles, the average ranking displayed 16%
Black profiles.

Potential for Correcting Societal Bias. Black users have
been shown to be disadvantaged in online dating [47]. Thus, it is
possible that these profiles are over-sampled by this dating service
to compensate for their lower click-through rates. Suppose that we
want tomeasure howwell rankingsmatch the vendors’manipulated
population demographics. Then in this case,p is the true percentage
of Black profiles displayed by the vendor’s ranking algorithm. At
each rank k , we have a binomial sampling distribution of Black
profiles with size n = 672 (i.e. the total number of searches). Thus,
we can continue using the Z-test approximation for binomials as
our distance metric.

Evaluating Ri Individually. We begin by evaluating each
ranked list Ri individually. First, we find that for all values of the λ-
parameter, the majority of lists can be considered fair, see Figure 5B.
For the steepest distributions (smallest value of the λ-parameter)
more result lists are unfair towards the Black users than towards
non-Black users; whenwe assume an attention distribution function
such that the users see on average 30% to 45% of results, there are
more realizations in which Black users get more attention than
proportional to their representation, and the situation equalizes for
the least steep distributions. This effect is caused by the fact that
white profiles appear on the first position in 54% of realizations,
even though they only constitute 48% of the observed population
on average, but for the rest of the high ranks, Black profiles are
presented more often than the population estimator would indicate.

Evaluating Ri in Aggregate. Next, we evaluate the fairness
of several realizations sampled in aggregate. A similar notion was
proposed by Biega et al. [3]. As shown in Figure 6, even if each
single ranking realization is unfair, the aggregate of multiple un-
fair rankings can be considered fair. Our metric can capture this
because the alignment vector is not binary. We note that the more
realizations included in the aggregate, the higher the fraction of
fair aggregates, regardless of the assumed attention distribution
function. Still, the steeper the function, the more runs are necessary
to achieve a fair aggregate. In a hypothetical case of multiple rank-
ings generated by a random (and, thus, unbiased [51, 54]) ranker,
each rank will converge to contain a proportional representation
of classes, and the ranking will be fair regardless of the assumed
attention distribution function.

Summary. This case study highlights several important find-
ings. The perception of the existence and even the direction of bias
depends on the attention distribution. Furthermore, the bias can be
corrected over time by reshuffling the results. Finally, our metric
can accommodate population estimates that are different from the
underlying populations for example to correct for societal biases.

5.3 Political Bias in Web Search
Our third case study differs from the previous two in that there is
no protected group; instead, the alignment li is a proxy for political
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Figure 6: The investigated dating service returns a different
set of results to the same query issued by the same person.
As a consequence, while each ranking might be unfair, the
results in aggregate are fair. The number of runs necessary
to expect a fair ranking depends on the chosen distribution
parameters.

leaning of each item in the ranked list. The dataset we use was col-
lected and made available to us by Robertson et al. [46]. There are
two elements to the dataset: (1) search results and (2) partisan audi-
ence bias estimates. The first part comprises the first pages of results
to 1,443 different web search queries. The second part maps 19,022
domains that appear in the search results to the bias scores on a lib-
eral/conservative axis. Based on the tweets from registered voters,
it assigns a number from -1 (only Democratic voters share content
from that domain) through 0 (Democratic and Republican voters
are equally likely to share content from this domain) to 1 (shared
only by Republican voters). For example, blacklivesmatter.com
scores -0.94, en.wikipedia.com scores -0.22, dhs.gov scores -0.01,
youtube.com scores 0.13, and catholics4trump.com scores 0.98.
Note that the score is assigned to a domain, not a specific webpage.

In this case study, we measure whether the aggregated partisan
bias of search results is cancelled, given the attention distribution.
Among the 1,443 searches in the dataset, we select three examples
that best highlight the importance of considering attention distri-
bution in the audit. In the interest of brevity, we omit the distance
metric steps of Viable-Λ. We do, however, report the difference
between the source biases weighted by the attention per rank and 0.
Positive values indicate that a result list leans conservative; negative
values indicate liberal lean.

Figure 7 presents the search results to three queries: “financial
regulation”, “obamacare continue”, and “medicare reform”, along
with perceived partisan bias of each of these lists for different at-
tention distribution functions. Note that in the first panel, small
values of the λ-param correspond to a flatter distribution; as the
λ-param grows, more attention is given to top results. The search
engine might return multiple items from the same domain, there-
fore some domains appear multiple times in the list (for example
healthcare.gov in Figure 7b).

The results in Figure 7 for “financial regulation” are neutral re-
gardless of how attention is distributed since most of the results are
apolitical. The results for “obamacare continue”, on the other hand,
lean republican: they feature three items from highly conservative
sources. Still, because the first result is liberal-leaning—and among
the first four results, three lean liberal—the result list will appear



Figure 7: The perception of biasmay depend onhow the users of a service distribute their attention to the presented results. The
neutral results for “financial regulation” form a list that appears neutral regardless of usage patterns. However, “obamacare
continue” and “medicare reform”might appear partisan in either direction, depending on the attention distribution function.

to be liberal-leaning overall if the attention distribution function is
steeper. Finally, the results for “medicare reform” are almost exclu-
sively from democratic-leaning sources. However, because the top
result comes from a strongly conservative outlet, the list exhibits
strong conservative-bias if the attention distribution function is
steep. Thus, these examples illustrate how the shape of the atten-
tion distribution function can dramatically alter conclusions about
the fairness/bias of ranked outputs.

6 LIMITATIONS

The Shape ofWR . While our framework allows for arbitrary
families ofWR , we only considered the truncated geometric distri-
bution in our examples. The results of the Viable-Λ test rely on an
accurate model of human attention; thus further research into hu-
man perception and the quantification of the SEME would improve
the basis of this metric.

Additionally, singlely-parameteredWR may not be sufficient in
modelling expected attention. One important parameter is pagina-
tion; researchers have found that the CTR of the last result on a
page getting more clicks than the pre-to-last [42], and each page in-
troducing a disproportional drop-off of attention [26]. Furthermore,
modern search engines often add variation into their search results.
For example, Google search might display the actual content the
user is seeking directly in the result page, or group results by type
(i.e., “Sponsored”, “Video”, etc.).

Population Estimators. In this work, we derived the popula-
tion estimators p̂ directly from R using the L̄ estimator. Hence, we
assumed that the items the vendor chooses to show in the top k
results are a proportional representation of all N potential results.
It is likely, however, especially with large N , that they are not. For
example, a real-world candidate ranking system employed by Ama-
zon was shown to systematically rank women lower than men [11].
If we audited it and only had access to the top 100 results out of
1000, we would be likely to assume a p̂ that underestimates the
fraction of female candidates.

7 DISCUSSION
Studies have shown that swapping search results can cause signif-
icant changes in users’ eye-gaze and click patterns. For example,
after reshuffling Google Search results, unwitting users still tend to
click on the top results, but some do shift more attention to lower
ranks [35]. While we can use our metric to check if Λ exists such
that representational parity is achieved (or—from the operator’s
point of view—verify that the results are fair given the known Λ),
it is not guaranteed that altering results based on the metric’s mea-
surements will create fair rankings, since user behavior may change
in uncertain ways. One possible way to create fair rankings is by
means of a continuous, iterative process: the operator reshuffles
the results to achieve parity under a measured Λ, users potentially
change their behavior as a response, the operator updates the Λ
estimate, and so on.

8 CONCLUSION
In this work we introduced a novel metric of group fairness in
ranked lists, tying the measurement to the consumers’ attention
distribution. We showed how our approach could be used by audi-
tors on three real world examples. Our results highlight the need for
modelling attention specifically for the audited service: depending
on the attention distribution function, the same list of results can
appear biased both in favor and against the protected group. All
code will be made publicly available upon publication.
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